本周即将召开!一文详解全国社会媒体处理大会(8)

2017-09-12 18:46 浏览次数:

论坛简介:推荐系统在金融、电商、零售、社交媒体等领域有着广泛的应用。近年来,人工智能在语音识别、计算机视觉、自然语言处理等领域取得了重大的突破,但在推荐系统领域的研究与应用仍处于早期阶段。本论坛邀请了多位推荐系统领域的学者,共同分享他们在这个领域的最新研究成果,以及对推荐系统未来的思考。论坛内容包括:融合用户上下文的个性化推荐;今日头条的人工智能技术实践;基于循环神经网络的序列推荐;以及冷启动推荐的思考与进展。

论坛主席:谢幸 研究员(微软亚洲研究院)

本周即将召开!一文详解全国社会媒体处理大会

报告主题:融合用户上下文的个性化推荐

嘉宾简介:张敏, 清华大学计算机科学与技术系副教授

报告摘要:各类电商和社交平台积累了丰富的用户数据,在推荐系统的设计中,如何有效的利用用户信息来提升推荐的精度和用户体验是一个尚待解决的问题。本次报告试图从模型设计和理论探索角度出发,讨论我们在推荐系统中融合用户上下文的思路和最新进展。报告将从三个方面介绍我们利用用户上下文拓展传统推荐方法的尝试,包括如何对社交网络和推荐系统中的隐式反馈进行精细建模,如何利用神经网络和用户社交信息对经典的SVD++ 进行拓展,以及如何将个性化推荐拓展到群组推荐并利用帕累托最优方法来同时确保推荐效益和公平性。

报告主题:今日头条的人工智能技术实践

嘉宾简介:曹欢欢,今日头条算法架构师

报告摘要:近几年人工智能技术的发展如火如荼,一个突出的表现就是很多传统行业正在被人工智能技术深刻影响。2012年上线后迅速崛起的明星产品今日头条就是一个用人工智能技术颠覆信息分发行业的经典案例。那么今日头条到底应用了哪些人工智能技术?这些技术是如何提升了用户和内容生产者使用体验的?在这个报告里,我将尝试简要的解答上述问题,希望能给各位业界同仁一些有益的启发。

报告主题:基于循环神经网络的序列推荐

嘉宾简介:吴书,中国科学院自动化研究所副研究员

报告摘要:随着互联网应用的快速发展,推荐系统逐渐成为了信息检索、数据挖掘等领域中的研究热点。它不仅能提升用户体验,同时也能为应用平台创造更多价值。在广泛存在的序列推荐场景中,传统方法在还存在着一系列的局限性,同时在面对实际应用场景时传统方法常无法建模好其中的关键因素。报告围绕序列推荐中存在的一些主要问题,构建基于循环神经网络的序列推荐模型框架,详细讲述针对情境建模、时序建模提出的策略,介绍如何更为有效的利用时空情境信息、有效建模一般情境和时序情境、把握多行为关系等方面的一系列探索,以期构建更为有效可靠的序列推荐模型。

报告主题:冷启动推荐的思考与进展

嘉宾简介:赵鑫,北京大学博士,中国人民大学信息学院讲师

报告摘要:推荐系统已经成为电子商务平台和社交网络平台必不可少的重要功能组件。长期困扰推荐系统的一个问题就是“冷启动推荐”问题。冷启动推荐问题通常包括两种:新用户推荐和新物品推荐。本次报告试图对讲者以及其他学者最近的一些研究进展进行一次梳理和总结,给出对于冷启动推荐的部分解决思路。报告主要涵盖两大块:新物品和新用户推荐。新物品推荐主要介绍最新的一些深度学习的研究进展(非讲者工作),新用户推荐主要介绍基于用户属性的方法与基于物品代表的方法(讲者工作)。

8、企业论坛

论坛时间:2017年9月17日下午 16:00-18:00

论坛简介:近年来,社会媒体处理技术的发展如火如荼,一个突出的表现就是IT创新企业几乎涵盖了与社会媒体处理技术相关的各类业务。本论坛旨在分享与社会媒体处理技术相关的企业主要业务、分析行业发展趋势,使之一方面有效增进校企合作、产研结合,另一方促进相关领域的高校人才培养,更好的服务企业,服务社会。

论坛主席:李斌阳(国际关系学院)

本周即将召开!一文详解全国社会媒体处理大会

报告主题:新浪微博Feed流机器学习实践

嘉宾简介:刘博,高级架构师,新浪微博高级架构师